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Abstract

The Karhunen±LoeÁ ve Galerkin method, which is a type of Galerkin method that employs the empirical
eigenfunctions of the Karhunen±LoeÁ ve decomposition as basis functions, is shown to solve inverse natural

convection problems e�ciently. The speci®c problem investigated is the inverse natural convection problem of
determining the time-varying strength of a heat source from temperature measurement in the domain. The
Karhunen±LoeÁ ve Galerkin procedure can reduce the Boussinesq equation to a set of minimal number of ordinary

di�erential equations by limiting the solution space to the smallest linear subspace that is su�cient to describe the
observed phenomena. The performance of the present technique of inverse analysis using the Karhunen±LoeÁ ve
Galerkin procedure is assessed in comparison with the traditional technique of employing the Boussinesq equation,

and is found to be very accurate as well as e�cient. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Contrary to the direct problem which consists of
computing the consequences of given causes, the
inverse problem is associated with the reversal of the

cause±e�ect sequence and consists of ®nding the
unknown causes of known consequences. In many situ-
ations, the direct measurement of the cause is imposs-

ible or not practical and one is forced to estimate the
cause from the observation of the e�ect. There are
many such situations in heat transfer. For example,
the temperature of very hot surface is not easily

measured directly with sensors. Usually sensors are
placed beneath the surface and the temperature of hot
surface is estimated by inverse analysis.

The solution of these inverse problems is not

straightforward due to their ill-posedness; small per-
turbations in the observed functions may result into

large changes in the corresponding solutions. The
ill-posedness requires special numerical techniques to
stabilize the results of calculations. Commonly

adopted techniques for the solution of inverse heat
conduction problems (IHCP) are the least-square
methods modi®ed by the addition of regularization
terms that impose additional restrictions on admiss-

ible solutions and the conjugate gradient method
where the regularization is inherently built in the
iterative procedure [1]. These inverse algorithms are

iterative and therefore require repeated computation
of the governing equations before obtaining esti-
mations. Contrary to inverse heat conduction

problems, inverse convection problems have not
been addressed frequently, partly due to their math-
ematical complexity in comparison with the inverse

heat conduction. Convective heat transfer is gov-
erned by a set of nonlinear partial di�erential
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equations such as, the continuity equation, the

Navier±Stokes equation and the energy equation.

Since the inverse analysis requires repeated compu-

tation of governing equations, it is never trivial to

solve inverse convection problems, and very few

papers devoted to inverse convection have been

published so far. Moutsoglou [2] and Huang and

OÈ zisik [3] considered inverse convection problems

where the governing equations were greatly simpli-

®ed to facilitate the analysis and numerical compu-

tations. More recently, Prud'homme and Nguyen [4]

considered an inverse natural convection problem

employing a conjugate gradient method. They

adopted the stream function±vorticity formulation to

describe the ¯ow ®eld and use the adjoint variable

method to determine the conjugate direction. Park

and Chung [5] considered an inverse natural convec-

tion problem of determining the unknown strength

of a time-varying heat source in a cavity from the

temperature measurement within the ¯ow. The gov-

erning equation of the natural convection, the Bous-

sinesq equation, is employed without any

simpli®cation to determine the velocity and tempera-

ture ®elds. The inverse problem is posed as an op-

timization problem which is solved by a conjugate

gradient method, employing the adjoint equation to

obtain the descent direction. The di�culty of

obtaining the correct conjugate direction at the end

point is overcome by employing the modi®ed conju-

gate gradient method [3,6]. Since the governing

equation is not simpli®ed in Park and Chung [5], it

can be applied to many di�erent inverse convection

problems to yield rigorous results.

Perhaps one of the most important obstacles to the

rigorous analysis of the inverse natural convection pro-

blems is the tremendous requirement of computer

time, since the algorithms of inverse analysis are basi-

cally iterative. The repeated numerical solution of the

multidimensional Boussinesq equation is quite

demanding computationally. Therefore, one of the

most important prerequisites for the successful im-

plementation of a rigorous inverse analysis of convec-

tion problems is the development of a reliable reduced

order model, that is not mathematically complicated

but still predicts the system behaviors with accuracy.

An appropriate technique for this purpose is the Kar-

hunen±LoeÁ ve Galerkin procedure [7,8], which is a

Galerkin method employing the empirical eigenfunc-

tions of the Karhunen±LoeÁ ve decomposition as basis

functions. With the empirical eigenfunctions, one can a

Nomenclature

ai the ith velocity spectral coe�cient
bi the ith temperature spectral coe�cient
d(t ) conjugate direction of the regular conjugate

gradient method
D(t ) conjugate direction of the modi®ed conjugate

gradient method

G(t ) time-varying function of the dimensionless
strength of heat source

Hjl matrix de®ned in Eq. (21)

J performance function
Ljl matrix de®ned in Eq. (25)
MO number of measurement points
Mj vector de®ned in Eq. (19)

Nj vector de®ned in Eq. (23)
NM number of velocity eigenfunctions employed
NT number of temperature eigenfunctions

employed
P pressure
Pr Prandtl number

Pj vector de®ned in Eq. (26)
Qjlm matrix de®ned in Eq. (20)
R Rayleigh number

Rjlm matrix de®ned in Eq. (24)
Sjl matrix de®ned in Eq. (22)
t time

tf terminal time
T dimensionless temperature ®eld
v dimensionless velocity ®eld

Greek symbols
g coe�cient de®ned in Eq. (38)

d�x� Dirac delta function
dn�x� function de®ned in Eq. (4)
dai variation of the spectral coe�cient ai
dbi variation of the spectral coe�cient bi
dG variation of G(t )
dJ variation of the performance function
rJ gradient of the performance function

Z adjoint temperature ®eld
l adjoint velocity ®eld
r optimal step length de®ned in Eq. (40)

fi the ith velocity eigenfunction
ji the ith temperature eigenfunction
O system domain

Superscript
$ measured variable

Subscript
m measurement point
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priori limit the function space considered to the
smallest linear subspace that is su�cient to describe

the observed phenomena, and thus convert the govern-
ing equations to a model with a minimum degree of
freedom, resulting in a drastic reduction of compu-

tation time without loss of accuracy. Park and Cho [7]
has demonstrated that the dynamics of a ¯ow reactor,
governed by a convection±di�usion equation with a

complicated ¯ow ®eld, can be described faithfully by a
small number of ordinary di�erential equations with
the help of the Karhunen±LoeÁ ve Galerkin procedure.

In Park et al. [8], the Karhunen±LoeÁ ve Galerkin pro-
cedure has been successfully applied to the inverse heat
conduction problem.
In the present investigation, we apply the Karhu-

nen±LoeÁ ve Galerkin procedure to the solution of an
inverse natural convection problem of estimating the
time-varying strength of a heat source. In our previous

work [5], this problem was solved by means of a tra-
ditional method employing the Boussinesq equation. It
shall be shown that the Karhunen±LoeÁ ve Galerkin

procedure reduces the Boussinesq equation to a small
number of nonlinear ordinary di�erential equations,
which can be employed in the inverse analysis of natu-

ral convection e�ciently with su�cient accuracy. The
details of the Karhunen±LoeÁ ve Galerkin procedure are
well documented in our previous works [7,8], and
references therein. In the following sections, we recapi-

tulate the system description and governing equations
with relevant boundary conditions. The procedure of
construction of the low-dimensional model and its per-

formance shall also be addressed in detail. Finally, the
inverse natural convection problem of estimating the
strength of a heat source from the temperature

measurements in the domain shall be solved by
employing the low-dimensional model, and the e�-
ciency and accuracy of the Karhunen±LoeÁ ve Galerkin
procedure for the solution of inverse natural convec-

tion problems shall be addressed.

2. The system and governing equations

We consider a two-dimensional square domain with
a time-varying heat source G(t ) located at (x $, y $).

The inverse problem at hand is the estimation of the
unknown function G(t ) from the temperature readings
of a thermocouple located inside the domain. Employ-

ing the dimensionless variables introduced in our pre-
vious work [5], the set of governing equations may be
written as,

r � v � 0 �1�

@v

@ t
� v � rv � ÿrP� Prr 2v� R Pr Tj �2�

@T

@ t
� v � rT � r 2T� G�t�dn

ÿ
xÿ xy

�
dn
�
yÿ yy

�
�3�

where Pr is the Prandtl number and Ra is the Rayleigh
number. The function dn�x�, which approximates the
point source in the domain, is de®ned by:

dn
ÿ
xÿ xy

�
� n

2 cosh 2
ÿ
n
ÿ
xÿ xy

�� �4�

and becomes the Dirac delta function as n approaches

in®nity. As earlier [5], we take n = 20 with the dimen-
sionless value of �xy, yy� = (0.75, ÿ0.75). The rel-
evant initial and boundary conditions are

t � 0, v � 0, T � 0 �5�

x �21, v � 0,
@T

@x
� 0 �6�

y �21, v � 0, T � 0 �7�
The set of Eqs. (1)±(3) is solved by using the Cheby-
shev pseudospectral method [5,9] employing (40 � 20)
grids, which is found to be su�cient to resolve the

temperature and velocity ®elds. The range of Rayleigh
number considered in this investigation is between
4000 and 20,000.

Fig. 1 depicts the system and boundary conditions.
In the same ®gure, a typical ¯ow pattern and isotherms
are plotted together with the shape of the heat source

whose strength is indicated by darkness. The nonuni-
form grid system employed in the Chebyshev pseudo-
spectral method is also superimposed in the same
®gure.

3. The low-dimensional dynamic model

In this section, we reduce the set of governing Eqs.
(1)±(3) with the relevant boundary conditions (5)±(7)
to a small number of ordinary di�erential equations by

means of the Karhunen±LoeÁ ve Galerkin procedure.
Before applying the Karhunen±LoeÁ ve Galerkin pro-
cedure to reduce the degree of freedom of the system,
we need a set of empirical eigenfunctions which span

the solution space of the system for the ranges of par-
ameters of interest. According to the Schmidt±Hilbert
theory [7,10], the empirical eigenfunctions fi�x� can be

expressed linearly in terms of N snapshots:

fi�x� �
XN
j�1

ai�j�vj�x� �8�
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where vj�x� is the jth snapshot. Therefore, these useful

eigenfunctions can be obtained only from an ensemble

of snapshots which are representative of the system

characteristics [7,8]. An ensemble of snapshots charac-

terizing the system dynamics is obtained in the follow-

ing way. While imposing a step change on G(t ) from

0.0 to 5, we solve the set of Eqs. (1)±(3) and record the

transient velocity and temperature ®elds at a certain

time interval until the ®rst steady state is reached. In

this way, we obtain 250 velocity and 250 temperature

snapshots. Using the ®rst steady state as the initial

condition, we solve the governing equations again with

G(t ) = 15 until the second steady state is attained.

During this period we obtain another 250 velocity and

250 temperature snapshots. Finally, additional 250 vel-

ocity and 250 temperature snapshots are obtained by

solving the governing equations with G(t ) = 30 using

the second steady state as the initial condition until the

steady state is reached. In this way, we obtain sets of

750 velocity and 750 temperature snapshots. When the

Karhunen±LoeÁ ve decomposition technique [7,8] is

applied to the set of velocity and temperature snap-

shots, respectively, we get velocity and temperature

eigenfunctions in the order of their importance in char-

acterizing the system. These empirical eigenfunctions

are mutually orthogonal [7,8]. Fig. 2(a)±(f) show the

®rst, second, third, 23rd, 24th and 25th velocity eigen-

functions with the corresponding normalized eigen-

values, l1 � 0:9832, l2 � 1:3204� 10ÿ2, l3 � 1:7081�
10ÿ3, l23 � 4:8205� 10ÿ8, l24 � 4:6736� 10ÿ8, l25 �
4:5465� 10ÿ8, respectively. Similarly, Fig. 3(a)±(f)

show the ®rst, second, third, 25th, 26th and 27th tem-

perature eigenfunctions with the corresponding nor-

malized eigenvalues, l1 � 0:9712, l2 � 2:2897� 10ÿ2,
l3 � 3:0324� 10ÿ3, l25 � 3:2397� 10ÿ8, l26 � 3:1183
� 10ÿ8, l27 � 3:0759� 10ÿ8, respectively. As usual,

the empirical eigenfunctions with large eigenvalues rep-

resent the large scale structures of the velocity and
temperature ®elds, while the empirical eigenfunctions
with small eigenvalues represent small scale structures

of the corresponding ®elds.
Using these empirical eigenfunctions, we can reduce

the Boussinesq equation to a set of small number of

ordinary di�erential equations. We assume:

Fig. 1. The system and relevant boundary conditions.

Fig. 2. Velocity eigenfunctions. (a) The ®rst; (b) the second;

(c) the third; (d) the 23rd; (e) the 24th; (f) the 25th.
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v �
XNM

n�1
an�t�f�n��x, y� �9�

T �
XNT

n�1
bn�t�j�n��x, y� �10�

where f�n� is the nth velocity eigenfunction, j�n� is the
nth temperature eigenfunction, an is the nth velocity
spectral coe�cient, bn is the nth temperature spectral
coe�cient, NM is the total number of the velocity

eigenfunctions employed in the Karhunen±LoeÁ ve
Galerkin procedure, and NT is the total number of the
temperature eigenfunctions. When Eqs. (9) and (10)

are adopted to represent v and T approximately, the
momentum residual RM and the energy residual RT are
expressed as:

RM � @v

@ t
� v � rv� rPÿ Pr r 2vÿ R Pr Tj �11�

RT � @T

@ t
� v � rTÿ r 2Tÿ G�t�dn

ÿ
xÿ xy

�
dn

�
yÿ yy

�
�12�

which are usually not equal to zero.
Applying the Galerkin principle which enforces the

residual to be orthogonal to each of the basis func-
tions,�
O
RM � f�j� dO � 0 �j � 1, 2, . . . ,NM� �13�

�
O
RTj�j� dO � 0 �j � 1, 2, . . . ,NT� �14�

Eqs. (1)±(3) with relevant boundary conditions (5)±(7)
are reduced to the following sets of ordinary di�eren-
tial equation

Mj
daj
dt
�
XNM

l�1

XNM

m�1
alamQjlm � Pr

XNM

l�1
Hjlal

ÿ R Pr
XNT

l�1
blSjl � 0

�15�

Nj
dbj
dt
�
XNM

l�1

XNT

m�1
albmRjlm �

XNT

l�1
Ljlbl ÿ G�t�Pj � 0 �16�

with the initial conditions

aj�t � 0� �

�
O
v�x, t � 0� � f�j� dO

Mj
�17�

bj�t � 0� �

�
O
T�x, t � 0�j�j� dO

Nj
�18�

In the above equations,

Mj �
�
O
f�j� � f�j� dO �19�

Qjlm �
�
O
f�j� �

ÿ
f�l� � rf�m�

�
dO �20�

Hjl �
�
O

ÿrf�j��:ÿrf�l��T
dO �21�

Sjl �
�
O
j�l�f

v
�j� dO �22�

Nj �
�
O
j 2
�j� dO �23�

Rjlm �
�
O

ÿ
f�l� � rj�m�

�
j�j� dO �24�Fig. 3. Temperature eigenfunctions. (a) The ®rst; (b) the sec-

ond; (c) the third; (d) the 25th; (e) the 26th; (f) the 27th.
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Ljl �
�
O
rj�l� � rj�j� dO �25�

Pj �
�
O
dn
ÿ
xÿ xy

�
dn

�
yÿ yy

�
j�j� dO �26�

where the x- and y-component of the velocity eigen-

functions are denoted by

f�j� �
�
fu
�j�, f

v
�j�
�

�27�

and O is the system domain. The term due to the

pressure gradient in Eq. (11) is removed by exploiting
the fact that the velocity eigenfunctions f�j � are sol-
enoidal and satisfy homogeneous boundary conditions.

The numbers of empirical eigenfunctions employed,
NM and NT, are determined by comparing the result
of the low-dimensional dynamic model with the nu-
merical solution of the original partial di�erential

equations for a typical heat source function G�t� �
3� 0:25 sin�2pt� � 1:25 sin�4pt� � sin �6pt�: Usually the
error of the low-dimensional model decreases as the

number of empirical eigenfunctions employed increases
up to the optimal number [7,8]. However, further
increase in the number of empirical eigenfunctions

beyond the optimal number does not always improve
the accuracy because the empirical eigenfunctions with
very small eigenvalues are usually contaminated with

round-o� errors. The optimal numbers of the velocity
and temperature eigenfunctions for the set of Eqs. (15)
and (16) are found to be NM = 25 and NT = 27.
Employing these number of empirical eigenfunctions,

the relative error of the low-dimensional model with
respect to the pseudospectral solution of the Boussi-
nesq equation is less than 0.3%. In the sequel, all

results of the Karhunen±LoeÁ ve Galerkin procedure are
based on the low-dimensional model constructed using
these optimal numbers of eigenfunctions. Fig. 4(a) and

(b) show the comparison of velocity components
obtained by the low-dimensional dynamic model with
those by the pseudospectral solution of the Boussinesq
equation at several locations indicated when G(t ) var-

ies as given above. The corresponding result for the
temperature ®eld is shown in Fig. 4c. It is shown that
both, the pseudospectral method and the Karhunen±

LoeÁ ve Galerkin procedure yield almost the same
results. These results demonstrate that the set of
empirical eigenfunctions employed in the low-dimen-

sional dynamic model spans the admissible solution
space of the Boussinesq equation for the speci®c G(t )
given above.

Fig. 4. Comparison of the results of the low-dimensional

dynamic model with those of the pseudospectral solution at

selected points indicated. (a) x-component of the velocity; (b)

y-component of the velocity; (c) temperature.
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4. Solution of the inverse natural convection problem

employing the low-dimensional dynamic model

The temperature ®eld inside the domain, which can
be easily measured at various locations, is determined

by the heat source function G(t ). Therefore, G(t ) can
be estimated by using the measured values of the tem-
perature ®eld at certain locations. The performance

function for the identi®cation of G(t ) is expressed by
the sum of square residuals between the calculated and
observed temperatures as follows:

J � 1

2

XMO

m�1

�tf
0

h
T�xm, ym, t� ÿ T y�xm, ym, t�

i 2
dt �28�

where T�xm, ym, t� is the calculated temperature,
T y�xm, ym, t� is the observed temperature at the lo-
cation �xm, ym), and MO is the total number of

measurement points. Although only one measurement
point is employed in the present work (i.e., MO � 1�
as in our previous investigation [5], summation over

the measurement points is kept to make the formula
more general.
To minimize the performance function (28), we need

the gradient of J, rJ, which is de®ned by

dJ�G� � J�G� dG� ÿ J�G�1hrJ, dGi �
�tf
0

rJdG dt

�29�
where tf , the ®nal time, is 1.0. The function rJ can be

obtained by introducing the adjoint variables lj �j � 1,
2, . . . ,NM � and Zj �j � 1, 2, . . . ,NT � such that the per-
formance function can be rewritten as follows:

J � 1

2

XMO

m�1

�tf
0

"XNT

i�1
bi�t�j�i��xm, ym � ÿ T y�xm, ym, t�

# 2

dt

ÿ
XNM

j�1

�tf
0

lj�t�
"
Mj

daj
dt
�
XNM

l�1

XNM

n�1
Qjlnalan � Pr

XNM

l�1
Hjlal

ÿ R Pr
XNT

l�1
blSjl

#
dt

ÿ
XNT

j�1

�tf
0

Zj�t�
"
Nj

dbj
dt
�
XNM

l�1

XNT

n�1
albnRjln �

XNT

l�1
Ljlbl

ÿ G�t�Pj

#
dt �30�

After taking a variation of J given by Eq. (30), inter-
changing the summation indices and setting the result-
ing equation equal to zero, we ®nd

rJ �
XNT

j�1
ZjPj �31�

while the adjoint variables, lj and Zj, must satisfy the
following equations,

Mj
dlj
dt
ÿ
XNM

l�1

XNM

n�1
Qljnllan ÿ

XNM

l�1

XNM

n�1
Qnljlnal

ÿPr
XNM

l�1
Hljll ÿ

XNT

l�1

XNT

n�1
ZlbnRljn � 0 �32�

Nj

dZj
dt
ÿ
XNT

n�1

XNM

l�1
ZnalRnlj ÿ

XNT

l�1
ZlLlj � R Pr

XNM

l�1
Sljll

�
XMO

m�1

"
j�j��xm, ym �

(XNT

i�1
bi�t�j�i��xm, ym �

ÿT y�xm, ym, t�
)#
� 0 �33�

with the following relevant starting conditions

lj�t � tf � � 0 �j � 1, 2, . . . ,NM� �34�

Zj�t � tf � � 0 �j � 1, 2, . . . ,NT� �35�

As in our previous work [5], where the same problem
of inverse natural convection has been solved using the
original partial di�erential equation, the Fletcher±

Reeves algorithm of conjugate gradient method is used
to minimize the performance function. The conjugate
direction at the ®rst step is determined by

d 0�t� � rJ�t� �
XNT

j�1
ZjPj �36�

Beginning the second iteration step, the conjugate
direction is given by

d i�t� � rJ i�t� � gid iÿ1�t� �37�

where

gi �

�tf
0

ÿ
rJ i�t�

� 2
dt�tf

0

ÿ
rJ iÿ1�t�

� 2
dt

�38�

and i is the iteration number. Then the heat source
function is updated in the conjugate direction as fol-
lows:

G i�1 � G i ÿ rd i�t� �39�

The optimal step length r in the direction d i�t� is
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obtained by minimizing J�G i ÿ rd i � with respect to r:

r �

XMO

m�1

�tf
0

"XNT

i�1
bij�i��xm, ym � ÿ T y�xm, ym, t�

#"XNT

i�1
dbij�i��xm, ym �

#
dt

XMO

m�1

�tf
0

"XNT

i�1
dbij�i��xm, ym �

# 2

dt

�40�

The sensitivity functions dbi in Eq. (40) are obtained
by solving the following sensitivity equations.

Mj
d

dt
daj�

XNM

l�1

XNM

n�1
Qjlndalan �

XNM

l�1

XNM

n�1
Qjlnaldan

�Pr
XNM

l�1
Hjldal ÿ R Pr

XNT

l�1
Sjldbl � 0 �41�

Nj
d

dt
dbj�

XNM

l�1

XNT

n�1
dalbnRjln �

XNM

l�1

XNT

n�1
aldbnRjln

�
XNT

l�1
Ljldbl � d�t�Pj �42�

The relevant initial conditions for the sensitivity
equations are

daj�t � 0� � 0 �j � 1, 2, . . . ,NM� �43�

dbj�t � 0� � 0 �j � 1, 2, . . . ,NT� �44�
The conjugate gradient method as applied to the

inverse natural convection problem employing the low-
dimensional dynamic model follows the procedure
below.

1. Assume the heat source function G(t ) and calculate
the velocity and temperature ®elds by solving Eqs.
(15) and (16).

2. Solve the adjoint Eqs. (32) and (33).

3. rJ is determined by Eq. (31).
4. The conjugate direction d i�t� is given by Eq. (37)

with gi determined by Eq. (38).

5. Solve the sensitivity Eqs. (41) and (42).
6. The optimal step length in the conjugate direction

d i�t� is given by Eq. (40).

7. The heat source function G(t ) is updated according
to Eq. (39).

8. Repeat the above procedure until convergence.

5. Modi®ed conjugate gradient approach

As in our previous work [5], the conjugate gradient

method employing the adjoint equation does not yield
correct estimation of heat source function at the ®nal

time G�tf�, which is always equal to the initial guess
G 0�tf�: Since the value of Zj is zero at the ®nal time
t � tf (Eq. (35)), rJ is also zero at t � tf due to Eq.
(31). From Eq. (37), we ®nd that the conjugate direc-

tion vanishes at t � tf , and consequently, the heat
source function at the ®nal time is left unchanged at
t � tf (cf. Eq. (39)). The di�culty encountered at the

®nal time tf is alleviated by using the following modi-
®ed conjugate gradient method [3,5,6]. From Eqs. (29)
and (31), the variation of the performance function dJ
may be rewritten as:

dJ �
�tf
0

dG�t�
8<:XNT

j�1
ZjPj

9=; dt �45�

If Eq. (45) is integrated by parts with respect to t, we
®nd

dJ � ÿ
�tf
0

ddG
dt

�t
tf

XNT

j�1
Zj�t 0 �Pj dt 0 dt �46�

Therefore, the derivation of J with respect to dG
dt is

given by the following expression

rJ
�

dG

dt

�
� ÿ

�t
tf

XNT

j�1
Zj�t 0 �Pj dt 0 �47�

Then, we take the conjugate direction as follows:

d i�t� �
�t
0

Di�t 0 � dt 0 �48�

where

Di � rJ
�

dG

dt

�i

�giDiÿ1 �49�

Since d i�tf �, obtained by Eq. (48), is nonzero, the
modi®ed conjugate gradient method yields reasonably
accurate estimation of G�tf�, contrary to the previous
regular conjugate gradient method. On the other hand,

from Eq. (48) it can be seen that d i�0� � 0: Then, for
the same reason with the regular conjugate gradient
method, the modi®ed conjugate gradient method will
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not improve the starting value G(0). This dilemma is

overcome by combining the regular and modi®ed con-
jugate gradient methods sequentially. At the ®rst stage,
we employ the modi®ed conjugate gradient method for

a certain number of iterations until a reasonably good
estimation of the end value G�tf� is attained. After-
wards, the regular conjugate gradient method is
adopted using the estimation of the modi®ed conjugate

gradient method as the initial approximation, until a
converged pro®le is obtained.

6. Results

We compare the accuracy and e�ciency of the Kar-
hunen±LoeÁ ve Galerkin procedure with those of the

traditional method of employing the original partial
di�erential equations for the inverse natural convection
problem of estimating the unknown strength of a time-
varying heat source G(t ) in the domain. To make a

fair comparison, we consider the same heat source
functions G(t ) adopted in Park and Chung [5], where

Fig. 5. Various shapes of the heat source functions considered in the present investigation.

Fig. 6. Estimated heat source function G(t ) for the case (a) of Fig. 5 (a) SM-CG; (b) KLG-CG.
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the same inverse natural convection problem has been
solved by using the Boussinesq equation. Fig. 5(a)±(c)
depict these heat source functions. The initial approxi-
mation of G(t ) in the conjugate gradient method is

taken to be 0.0 for all numerical experiments reported
below. The simulated measurements containing

measurement errors are generated by adding Gaussian
distributed random errors to the computed exact tem-
peratures. The temperature recordings are assumed to
be done continuously by a thermocouple located at the

reference position (0.7604, ÿ0.3090). For the esti-
mation of the heat source functions, we employ the
combined iteration scheme [5] which involves both the

regular and modi®ed conjugate gradient methods. At
the ®rst stage, the modi®ed conjugate gradient method
is employed for a certain number of iterations until a

reasonably good estimation of the end point value
G�tf � is attained. Afterwards, the regular conjugate
gradient method is adopted using the estimation of the

modi®ed conjugate gradient method as the initial ap-
proximation to get the ®nal converged pro®le. The
error of G�tf� in the modi®ed conjugate gradient
method is de®ned by:

E �
X3
i�1

jG n�tf � ÿ G nÿi�tf �j
jG n�tf �j �50�

and the iteration of the modi®ed conjugate gradient is
stopped when E<0.01.

We ®rst consider an idealized situation in which
there are no measurement errors. The detailed algor-
ithm of the conventional method employing the Bous-

Table 1

Comparison of the SM-CG and the KLG-CG; convergence

rate, relative estimation error and CPU time

SM-CG KLG-CG

Case (a)

Iteration number (modi®ed) 31 16

Iteration number (regular) 16 13

Relative estimation error 7.20081� 10ÿ5 8.55776� 10ÿ5

Case (b)

Iteration number (modi®ed) 41 22

Iteration number (regular) 14 11

Relative estimation error 1.11346� 10ÿ4 1.52042� 10ÿ4

Case (c)

Iteration number (modi®ed) 49 46

Iteration number (regular) 26 19

Relative estimation error 4.00022� 10ÿ3 4.15266� 10ÿ3

CPU time (average) 1.827� 10ÿ5 (s) 3.996� 103 (s)

Fig. 7. Estimated heat source function G(t ) for the case (a) when the relative measurement error is 3%. (a) SM-CG; (b) KLG-CG.
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sinesq equation is well documented in Park and Chung

[5]. For brevity, we call the method employing the
Boussinesq equation the SM-CG, and that employing
the low-dimensional dynamic model the KLG-CG.

Fig. 6(a) and (b) shows the estimated pro®les for the
case (a) of Fig. 5 when using the SM-CG (Fig. 6a) and
the KLG-CG (Fig. 6b). It takes 31 modi®ed conjugate

gradient iterations and 16 regular conjugate gradient

iterations to obtain the converged pro®le with relative
estimation error of 7.20081� 10ÿ5 when using the SM-
CG. On the other hand, it takes 16 modi®ed conjugate

gradient iterations and 13 regular conjugate gradient
iterations before a converged pro®le of G(t ) with the
relative estimation error of 8.55776 � 10ÿ5 is obtained

Table 2

E�ect of measurement location on the accuracy of the estimation for the case (a) of Fig. 5

SM-CG KLG-CG

Measurement location xI � �0:7604, ÿ 0:3090�
Iteration number (modi®ed) 31 16

Iteration number (regular) 16 13

Relative estimation error 7.20081� 10ÿ5 8.55776� 10ÿ5

Measurement location xII � �0:8092, 0:0�
Iteration number (modi®ed) 14 17

Iteration number (regular) 16 11

Relative estimation error 1.71769� 10ÿ4 2.54690� 10ÿ4

Measurement location xIII � �0:8526, 0:1564�
Iteration number (modi®ed) 17 18

Iteration number (regular) 17 11

Relative estimation error 2.62246� 10ÿ4 3.34519� 10ÿ4

Fig. 8. Estimated G(t ) when the relative measurement error is 6%. (a) SM-CG; (b) KLG-CG.
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when using the KLG-CG. Table 1 summarizes the
comparison of the SM-CG and the KLG-CG for the

three cases of Fig. 5 as regards the convergence rate,
the relative estimation error and the consumption of
CPU time when using the SUN ultrasparc II worksta-

tion. It is shown that the convergence rate and the
relative estimation error of the KLG-CG are not much
di�erent from those of the SM-CG. However, the

CPU time consumption of the KLG-CG is about 1/45
of that of the SM-CG on average. This drastic re-
duction of CPU time with the use of the KLG-CG is

not unexpected considering the fact that the degree of
freedom of the low-dimensional dynamic model is only
52 while that of the Boussinesq equation, which is
equivalent to the grid number employed in the

pseudospectral computation multiplied by 4 (u, v, P,
T ), is about 3200. The CPU time required to obtain
the empirical eigenfunctions and construct the low-

dimensional dynamic model of the KLG-CG is not sig-
ni®cant when compared to the CPU time needed in the
conjugate gradient iterations as explained in our pre-

vious papers [7,8]. Moreover, once the low-dimensional
model is constructed for a given system, it can be
employed to estimate various other shapes of heat

source function G(t ).
Next consideration is the e�ect of the location of

sensor on the accuracy of the estimation. In addition
to the previous reference location xI � �0:7604,
ÿ0:3090�, we consider two additional locations farther
from the heat source than the reference one, i.e.,
xII � �0:8092, 0:0�, and xIII � �0:8526, 0:1564�: The dis-

tances between the heat source and the sensor satisfy
jxIÿxSj < jxIIÿxSj < jxIIIÿxSj, where xS is the location
of the heat source. Table 2 summarizes the results. We

®nd that, both with the SM-CG and the KLG-CG, as
the location of the sensor approaches that of heat
source, the accuracy improves since the sensitivity of

the temperature ®eld with respect to the heat source
increases as the distance between the measurement
point and the heat source decreases. It is also shown
that the accuracy of the estimation obtained by the

KLG-CG is comparable to that of the SM-CG.
Figs. 7 and 8 show the e�ect of measurement error

on the accuracy of estimation. When there are

measurement errors, we use the following discrepancy
principle as the stopping criterion for the conjugate
gradient method [3,5,8]. Namely, if the value of the

performance function J has been decreased such that

J < E 211

2

�tf
0

XMO

m�1
s 2 dt �51�

Fig. 9. Estimated heat source function for the case (a) when G(t ) is increased by three times. (a) SM-CG; (b) KLG-CG.
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we stop the iteration, where s is the absolute measure-
ment error. Fig. 7a is the estimation obtained by the

SM-CG and Fig. 7b is the estimation obtained by the
KLC-CG when the relative measurement error is 3%.
Fig. 8(a) and (b) show the estimated G(t ) obtained by

the SM-CG and by the KLG-CG, respectively, when
the relative measurement error is 6%. As expected, the
accuracy of the estimation deteriorates as the measure-

ment error increases both, with the SM-CG and the
KLG-CG. It is also shown than the KLG-CG yields
estimations comparable to those of the SM-CG even

when there are measurement errors.
Finally, the magnitude of G(t ) for the case (a) is

increased to three times of the default value given by
Fig. 5a. This is equivalent to the increase of Rayleigh

number from 4000 to about 12,000. Fig. 9(a) and (b)
show the estimated pro®les obtained by the SM-CG
(Fig. 9a) and by the KLG-CG (Fig. 9b), respectively.

Both, the SM-CG and the KLG-CG yield reasonably
accurate results. Since the empirical eigenfunctions
employed in the low-dimensional dynamic model are

constructed in Section 3 such that they span the sol-
ution space of the system up to Ra124,000 (or
G�t�130), the KLG-CG is expected to yield reasonably

accurate results up to this range of Rayleigh number.

7. Conclusion

The techniques for the inverse problems are basically
iterative and require repeated computation of govern-

ing and adjoint equations. Thus, the solution of inverse
natural convection problems requires repeated numeri-
cal solution of Boussinesq equation and its adjoint

equation, and the resulting tremendous consumption
of computer time has hindered progresses in the
inverse natural convection problems. In the present in-
vestigation, we reduced the Boussinesq equation to a

small number of ordinary di�erential equations
through the Karhunen±LoeÁ ve Galerkin procedure, and
employed the resulting low-dimensional dynamic

model successfully to solve an inverse natural convec-
tion problem of estimating the unknown strength of a
time-varying heat source from the temperature

measurement within the ¯ow. This method of solving
the inverse natural convection problem (KLG-CG) has

been compared with the traditional method employing
the Boussinesq equation [5] (SM-CG) as regards accu-
racy and e�ciency. It is found that the KLG-CG

yields estimations as accurate as those of the SM-CG
for various shapes of heat source function with various
degree of measurement errors at a drastically reduced

computer time.
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